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1. Introduction
The recording and analysis of brain activity is of great interest to those studying
the brain and brain disorders, especially in real-world situations, such as when a
Soldier is in theater.

There are several methods to study the electrical activity in the brain, such as elec-
trocorticography (ECoG) and electroencephalogram (EEG), with varying degrees
of invasiveness and accuracy. Because ECoG is very invasive, requiring surgery to
implant the electrodes, this technique is ill suited for mass deployment of neural
recorders. EEGs are a noninvasive method to measure the electrical activity in the
brain that can still be used to study brain activity.

Currently, most EEGs are recorded in highly controlled laboratory environments,
which control for the electromagnetic interference of equipment, ambient radio sig-
nals, and the patient’s movements. This type of control would not be possible to
replicate in the field, as Soldiers would be moving around. Additionally, for a field-
able system, the implementation of the EEG cannot impede the Soldier, and there-
fore, the size and weight of the EEG system would need to be designed to account
for this.

This report outlines the architectural decisions required to redesign the EEG system
architectures to address the power and practical recording considerations required
to design a system that can be used by the Soldier.

1.1 Background
Current commercial EEG systems are not useful for the Army’s purposes. Com-
mercial systems are targeted for either scientific research or consumer-grade elec-
tronics. Neither of these 2 categories can satisfy the Army’s needs, as the scientific
equipment is much too heavy and cumbersome for a Soldier to wear in the field
and consumer-grade electronics are not designed with sufficient accuracy to permit
meaningful research on the data. Furthermore, neither set of systems can meet the
power requirements for a 72-h mission.

The EEG system desired to achieve this task must amplify a target signal with a
resulting minimum resolution below 1 µV while handling 10- to 100-mV swings
generated by head movements, eye blinks, and other motion artifacts along with
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any generated environmental noise. Figure 1 depicts an example of a 16-channel
EEG signal recorded for 10 s. These signals have already been processed to remove
the artifacts and therefore look relatively clean.

Fig. 1 Sample EEG measurements

Figure 2 shows an example of a typical EEG system, which includes a low-noise
amplifier (LNA), data converters, and an radio frequency (RF) link to transmit the
data to some host system. This work focuses on the analog frontend (AFE) and
digital systems from Fig. 2 and leaves the RF link and host for future work.

Fig. 2 Common EEG architecture

1.2 Commercial Systems
The performance specifications of 2 commercially available systems have been tab-
ulated in Table 1. Both of the full commercial systems would not be suitable for
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Soldier applications, since the battery life is not suitable for a nominal 72-h mis-
sion; therefore, these systems would require several recharges over that mission,
which would add weight to the Soldier’s load. The third product in the table is a
commercial chip from Texas Instruments.1 While this is not a full system, it would
be possible to use this as a base to build a larger system as its power consumption
would allow it to operate from a AA battery for more than 72 h. While this might be
acceptable in commercial applications, the Soldier already carries tens of pounds of
batteries and this EEG system should not add to that load.

Table 1 Sample specifications of commercial systems/products

EMOTIV Neuroelectronics TI
Epoc+2 ENOBIO3 ADS12991

Channels 14 8, 20, or 32 8

Bandwidth 0.2–43 Hz 0–250 Hz 27–662 kHz

Samples per second 256 500 250 – 16k

Resolution 0.51 µV 0.05 µV 0.72 µV

Noise N/A < 1 µV RMS 1 µV VPP

Battery life 6 – 12 h 13 – 16 h 40 mW (97.5 h)

2. System Design
To archive an EEG system that can be worn by the Soldier in the field, there are
several requirements the system must meet:

1) The system should not add to the weight the Soldier is carrying; therefore, it
will need to be self-powered (Section 2.1).

2) The system must be able to amplify the signal with minimal distortion due to
negligible clipping and other nonlinearity problems (Section 2.2).

3) The system will need to be intelligent enough to be able to balance the record-
ing quality and power requirements (Section 2.3).

The following sections cover the general approach to satisfy each of the previous
criteria.

3
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2.1 System Power
One of the main concerns while designing an EEG system architecture that needs to
be self-powered is the power consumption and preservation, as the energy required
to power the system will need to be harvested from the environment. There are
several methods to harvest power from RF, solar, motion, and thermal. In this case,
thermal energy harvesting appears to be the most promising.

A thermoelectric generator (TEG) should be able to harvest enough energy from
the heat of the Soldier’s scalp to enable the EEG system. Based on the work of
Carmo et al.,4 a TEG would be able to provide between 100–500 µW cm−2 with
a 1-K temperature gradient. Based on this estimate, the system would be able to
operate on a power budget of 200–300 µW, which keeps the TEG relatively small
while providing a realistic target size of several square centimeters. The size could
be as small as 0.4 cm2 and as large as 3 cm2.

Because of the limited power budget, the system will be operating in subthresh-
old (SubVt), which will support the low-power operation required, but places many
requirements on the AFE. In SubVt, the operating voltages of the system are re-
duced to below 1 V from the usual 5 V,1 which allows for a 25× to 125× reduction
in power. However, because of the reduced voltages, the input voltage range will
be limited and additional circuits will be required to maintain a recordable sig-
nal. Therefore, a voltage offset controller (VOC) will be introduced to stabilize the
LNA; otherwise, the system would risk major signal distortions due to clipping in
the amplifiers.

The power budget of 300 µW would need to be distributed across several sub-
systems, such as the AFE, data converters, digital signal processor, and wireless
telemetry. Since the wireless telemetry is not being considered in this work, 100 µW
will be allocated to its power budget.5 Therefore, only 100–200 µW would be avail-
able to the frontend and signal processing.

4



Approved for public release; distribution is unlimited.

2.2 Proposed System Architecture
The proposed EEG architecture, shown in Fig. 3, notionally contains 4 AFEs each
with a VOC, LNA, and variable gain amplifier (VGA). However, the number of
channels can be increased or decreased based on need. The 4 channels are time
multiplexed together in the multiplexer (MUX) and fed to the analog-to-digital con-
verter (ADC) to be digitized. The digitized data are then provided to the digital
signal processor (DSP), which will process the data and determine the appropriate
settings for each AFE.

Fig. 3 Proposed EEG system

This setup is intended to operate at low voltages to save power. However, this poses
some challenges with keeping the LNA and VGA from clipping the incoming sig-
nals, due to the reduced input voltage range of the LNA. To overcome this, the
VOC/digital-to-analog converters (DACs) are added to compensate for the DC volt-
age offset, which effectively extends the input range of the LNA.6

The VGAs and LNAs are responsible for setting the noise floor of the system and
should therefore be set to have the highest gain possible without causing distortion
to the signal. Finally, the ADC has a variable bitdepth,7 which allows the system
to reduce the power required for the data conversions, if additional resolution and
dynamic range are not required. Each of these components can be controlled by the
DSP, which will analyze the signal and determine the appropriate settings for the
VOC, LNA, and ADC to maximize signal fidelity and minimize power. This feed-
back and controllable settings of the AFE makes this an adaptive data acquisition
(ADA) system. The rules used in this work are expanded upon in Section 2.3.
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2.3 DSP Decision Rules
Although the DSP would be capable of sophisticated calculations and rules, for
the purposes of this work, several simple rules have been devised. Examples of
potentially more powerful rules would include rules that can proactively handle eye
blinks and muscle movements, which tend to be high amplitude and would require
additional processing to correct for these effects.

2.3.1 Rule 1 − Gain Determination
1) Determine allowable system input min, max, and peak-to-peak values:

(a) Compute gain0 = inputmin
signalmin

. This checks the maximum gain possible on
the negative rail.

(b) Compute gain1 = inputmax
signalmax

. This checks the maximum gain possible on
the positive rail.

(c) Compute gain2 =
inputpp
signalpp

. This checks the maximum gain possible for
the differential signal.

2) Determine minimum gain from gain0, gain1, and gain2, which will guarantee
that the system does not clip the signal.

3) Lookup the gain in gain table and apply the setting.

2.3.2 Rule 2 − Voltage Offset Determination
1) Take the old offset value and scale to the new AFE gain.

2) Determine if the signal is clipped:

(a) If yes, offset the signal by VDD towards the clipping.

(b) If no, offset the signal by the last value of the signal. This is acting as
a proxy for the DC value of the signal. The mean of the signal would
also have been a good candidate; however, this would have required
additional processing by the DSP, which would have increased the DSP
power.

3) Apply the offset.

6
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2.3.3 Rule 3 − Bitdepth Determination
To determine the bitdepth the following 2 equations are used:

Vmin =
Vswing

10
G
20 × 2N

(1)

N =

⌈
log2 Vswing − log2 Vmin −G× log2 10

20

⌉
(2)

where Vmin is the system resolution, Vswing is the input swing of the data converter,
G is the gain in dB, and N is the bitdepth. Equation 1 is used to compute the
minimum resolution the designer is interested in and Eq. 2 solves Eq. 1 for N .

The following steps are used in the bitdepth determination:

1) Take the new gain of the AFE.

2) Compute Eq. 2 to determine N based on the desired resolution. The bitdepth
ranges for specific desired resolutions based on this equation are shown in
Fig. 4.

3) Look up N in the bitdepth list and apply to the ADC.

(a) Vswing = 1 V (b) Vswing = 10 V

Fig. 4 Required bitdepths for ADC vs. gain and resolution

While the system is running, Vswing will be held constant and for this work Vmin

will as well. Therefore, only the gain will determine the bitdepth. In more sophisti-
cated rules, Vmin could possibly be modified to account for the current needs of the
system.
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From Fig. 4, it is apparent that lowering the input swing to the ADC also reduces the
number of bits required to achieve a given resolution, which makes sense based on
Eq. 2, but this also helps save power because power will be proportional to 2N . This
system will be targeting 1 µV with a ±500-mV swing, which means the required
bitdepths for the ADC are 7 to 17 bits based on the assumed AFE gain (Fig. 4a).

3. Experimental Setup
To analyze the effects of this system on signal fidelity and power, tests on different
system setups as well as systems of varied settings (i.e., gain, bitdepth, and volt-
age offset) have been performed. This work presents a tradeoff analysis of several
different architectures and discusses how each impacts power and signal fidelity,
compared to a baseline regular system without the ADA enabled.

The goal of this experiment is to show that the ADA does not impact the fidelity
of the signal. This is accomplished by comparing the output of a baseline system,
which does not include the ADA, with different systems with the ADA enabled.

Section 4.1 presents the analysis of the different architectures in Section 3.1. Section
4.2 presents an analysis of the impact the number of channels has on the system.
Section 4.3 presents an analysis of the impact the DSP adjustment rate has on the
frontend. Section 4.4 presents an analysis of the different component parameters to
aid in the circuit design of the system.

To accurately model the system power and fidelity, a MATLAB model was devel-
oped to allow for the design-space exploration. This allows for a cycle accurate
model, which can predict the effects of switching the AFE settings and track the
power required. The data used to evaluate the efficacy of the different architectures
were previously recorded EEG data sets, which were upsampled to provide enough
samples for the model to process.

8
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3.1 Architectures Under Consideration
The architectures under consideration are presented in Fig. 5. Figure 5a serves as
the baseline system, as it is comparable to the Texas Instruments ADS1299.1 The
remaining systems build upon the previous one, to show the impact of each addi-
tional control, shown in Fig. 5b–e.

(a) Architecture 0: Baseline
(b) Architecture 1: Architecture 0 with
MUX

(c) Architecture 2: Architecture 1 with
offset controller

(d) Architecture 3: Architecture 2 with
gain controller

(e) Architecture 4: Architecture 3 with
bitdepth controller

Fig. 5 Selected architectures for modeling

3.2 Power Modeling
To model the power in these architectures, the MATLAB model used the parameters
in Table 2, which were derived from the sources listed. The power is broken into 2
sources, static and dynamic. Static is the power the component consumes regardless
of the state of the settings and dynamic is dependent on the settings and operations
of the system. The loading capacitance for the MUX is overestimated, but overall
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the MUX does not contribute much to the total power, so this did not result in a
large error.

Table 2 Power model parameters

Static Dynamic

LNA8 680 nW V−1 0

ADC7 25.5 µW V−1 2N × 50.2 fJ/sample

MUX7 1.50 µW V−1 1 pF ×V2
DD

VOC7 3.00 µW V−1 2N × 50.2 fJ/sample

DSP9 1.67 µW V−1 11.7 pJ/add & 187.2 pJ/multiply

4. Results and Discussion
4.1 Effects of Different Architectures
The results of the different systems, shown in Fig. 5, have been tabulated in Table
3. The first architecture serves as the baseline for comparisons. This was modeled
at 5 V with 4 channels, which yields a very good signal fidelity, but would not be
able to meet the desired system power budget.

Table 3 Performance of different architectures from Fig. 5

Architectures RMS Error (%) Power (µW) Waste (µW)
Mean STDEV

0 (Baseline) 0.04 0.10 3978.37 2.03

1 1.17 2.69 3603.58 53.15

1 reduced VDD 52.63 26.10 19.09 3.42

2 0.66 0.27 25.63 0.05

3 0.81 0.63 25.90 0.07

4 0.81 0.62 26.84 0.07

Introducing the analog MUX allows the system to share particularly power-hungry
subsystems such as the ADC. In architecture 1, the power is reduced by a little
under 10%, by allowing the 4 channels to share the ADC. While this removes 3
ADCs from the system, it does require the remaining ADC to operate at 4 times the

10
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sampling rate to gather the same data, which accounts for the diminished reduction.
However, this does come with some negative tradeoffs, such as a decrease in the
fidelity, which is due to the MUX channel crosstalk; this is further explored in
Section 4.4.3. However, overall this does improve power and reduces the silicon
footprint of the ADC, which are both desirable outcomes.

Bringing that architecture down to SubVt, operating at 500 mV instead of 5 V, the
operation results in unacceptable distortion of the signal; however, the power re-
duced by 99.5%. This distortion is due to the clipping of the input signal in the
amplifiers, but this can be remedied with additional circuits, as shown.

The addition of the VOC brings the error below 1%, while meeting the power bud-
get. This yields the first candidate system, which can meet the requirements laid
out earlier in Section 2. With the addition of the gain and bitdepth controllers, the
error remains near 1% with a minor impact on power, with a total of 4.7% increase.
While the gain and bitdepth controls do not appear to offer much improvement at
this stage, they have been left in since the data being used to characterize this setup
do not include large swing effects like muscle movements and eye blinks.

As a proxy for system efficiency, the waste power is included in Table 3. The waste
power is defined by Eq. 3, where ErrorRMS is the root mean square (RMS) error of
the signal when compared to the original signal:

Pwaste = ErrorRMS × Power (3)

Ideally, this would be 0, but that is not practical; therefore, we target the systems
with as small a waste as possible. While architecture 3 appears to be performing
equivalently to architecture 4, the addition of the bitdepth control can be useful in
other applications outside of the EEG. For the remainder of this work, architecture
4, shown in Fig. 5e, is considered.

Figure 6 shows the breakdown of power for each component in the system for archi-
tecture 4 with 4 channels. From this figure, it is apparent that the largest contributor
to the power is the ADC, followed by the VOC. Both of these account for a total of
82% of the power. Therefore, each of these component must be carefully designed
so that they do not overwhelm the total power budget in the system.

11
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Fig. 6 Sample simulation power breakdown for architecture 4

4.2 Effects of Channel Count
As mentioned in Section 4.1, the most energy hungry device in the system is the
ADC. Therefore, time multiplexing channels together, allowing them to share the
ADC, helps drive the system efficiency up. This is apparent in Fig. 7b, where the
power per channels drops by 73% going from a 1- to 16-channel system, while
maintaining a total power, shown in Fig. 7a, well below the budget limits.

12
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(a) Power (b) Power per Channel

(c) RMS Error

Fig. 7 Performance impacts of channel count

Fig. 7a indicates a linear relationship between power and number of channels; there-
fore, extrapolating to the upper limits of the power budget of 200 µW, this system
would be able to support 59 channels. However, this requires that the bandwidth
of the MUX is sufficiently high to support the high switching speed. This limita-
tion can be observed in Fig. 7c, where the RMS error increases dramatically going
from 4 to 16 channels. To show that this is a manageable issue to overcome, the
MUX bandwidth is modified to 100 kHz. This figure shows that the error decreases
by several orders of magnitude when the bandwidth is increased. This is further
explored in Section 4.4.3.

13
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4.3 Effects of AFE Adjustment Frequency
What sets this system apart from other systems is its ability to dynamically adjust
the system parameters based on the measured data. While this could be a continuous
operation, it would likely be too computationally costly and only be worth it if the
algorithms could make use of the information. Therefore, the optimum adjustment
frequency is algorithm-dependent. Here the system is assumed to be operating on
the algorithms provided in Section 2.3. Figure 8 shows the system performance
while changing the adjustment frequency from 4 mHz to 256 Hz. As one would
expect, the power, shown in Fig. 8a, is mildly dependent on the adjustment period,
since the DSP is already modeled to be power efficient and the algorithms do not
require much computation. This would not be the case for increasingly sophisticated
algorithms.

(a) Power (b) RMS Error

(c) Waste Power

Fig. 8 Performance impacts of Fadjust

While the impact on power is small, the impact on the RMS error is substantial. This

14
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is due to the amplifier and VOC parameters not being adjusted frequently enough
to prevent clipping of the signals. This is evident at the low adjustment frequencies
in Fig. 8b; here the error approached 100% and the signal would be useless at these
error levels. Therefore, the adjustment frequency needs to be high enough to capture
the signal faithfully. To determine the adjustment frequency to use for the remainder
of this work, the minimum wasted power parameter was used, as shown in Fig.
8c, which shows the minimum to occur at 64 Hz. At this frequency, the estimated
power waste is 220 nW. Different algorithms would affect this and place different
requirements on the adjustment frequency.

4.4 Effects of Major AFE Parameters
Each of the subsystems in this architecture will have a different impact on the over-
all performance. In the following sections, the major parameters of each subsystem
are modified independently and their impacts evaluated. This will be useful for to
determine which parameters will require special attention by the designer and which
will have no measurable impact and can be ignored.

4.4.1 VOC Resolution
Since the VOC is helping the amplifier stay out of saturation, the resolution of
this component must be high enough to make meaningful corrections while not
consuming too much power. The performance impact is plotted in Fig. 9. While the
bitdepth of the VOC is less than 18 bits, there is not a large impact on power, and
the signal error only becomes acceptable above 12 bits. This would indicate that the
bitdepth would need to be at least 12 bits but no more than 18 bits.

(a) Power (b) RMS Error

Fig. 9 Performance impacts of VOC resolution

15
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Figure 10 shows the output voltage of the VOC for several bitdepths. From these
plots, it is evident that below 12 bits the VOC is too discretized to be effective,
and above 14 bits the outputs are about the same. It should be noted that the total
swing of the VOC is the full ±500 mV, which does not appear to be required as
the values all fall between ±25 mV; therefore, the VOC could be designed with a
smaller range and thus the bitdepth could be reduced as well, while maintaining the
same performance.

16
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(a) 6 bits (b) 8 bits

(c) 10 bits (d) 12 bits

(e) 14 bits

Fig. 10 VOC offset voltages for various resolutions

4.4.2 ADC Resolution
The ADC maximum bitdepth is varied from 6 to 24 bits. Figure 11 shows the impact
of the ADC bitdepth. In Fig. 11a, it is notable that after 16 bits the power no longer
increases as a function of 2N ; this is because for most of the signals, maintaining
the 1-µV resolution, up to 17 bits would be required, as discussed in Section 2.3.3.

17
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Figure 12 also shows this effect, increasing from 12 to 18 bits; the majority of the
bitdepths settle on 14 to 16 bits. This effect is coupled to the LNA gain since it is
used to determine the bitdepth required; as shown in Fig. 13, most of the time, the
LNA is set between 20–50 dB.

(a) Power (b) RMS Error

Fig. 11 Performance impacts of ADC resolution

18
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(a) 12 bits (b) 14 bits

(c) 16 bits (d) 18 bits

Fig. 12 ADC bitdepths selected

Fig. 13 LNA gain settings

Table 4 summarizes the impact and identifies the expected bitdepth range required
to meet a 6σ performance objective. In this case, the range would be 13 to 17 bits.
This would indicate that adding additional bits to the ADC would not gain the

19



Approved for public release; distribution is unlimited.

system much, although it would increase the complexity of the ADC substantially.

Table 4 ADC bitdepth summary

Max Power RMS Error Selected Bitdepth (bits) 6σ Range
Bitdepth (µW) (%) Mean STDEV (bits)

6 23.43 1.56 6.00 0.00 6 − 6

8 23.49 0.88 8.00 0.00 8 − 8

10 23.67 0.80 10.00 0.00 10 − 10

12 24.31 0.81 12.00 0.00 12 − 12

14 26.84 0.81 14.00 0.01 13 − 15

16 31.56 1.25 15.25 0.44 13 − 17

18 31.58 0.82 15.25 0.44 13 − 17

20 31.67 0.82 15.26 0.44 13 − 17

22 31.71 0.82 15.26 0.44 13 − 17

24 32.06 0.82 15.26 0.45 13 − 17

4.4.3 Bandwidth
The bandwidth of the AFE components will be very important to guarantee the full
signal can be measured; therefore, each component will need at least 100 Hz of
bandwidth. Only 2 of the AFE components model their bandwidth, the LNA and
MUX. These bandwidths were simulated from 100 Hz to 100 kHz. Figure 14 shows
the bandwidth impact for the LNA and MUX for a 4 channel system. As one would
expect, there is almost no impact on power. For both the LNA and VOC, the band-
widths less than 10 kHz appear to have a large impact on the error. For the VOC, this
is amplified because the channels are time multiplexed together, effectively mod-
ulating those to a higher frequency. Therefore, this component would need to be
designed to have significant headroom to prevent this from becoming an issue.
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(a) Power (b) RMS Error

Fig. 14 Performance impacts of LNA and MUX bandwidth

4.4.4 Noise
Another major contributor to the system performance is the noise the system adds
to the signals. This has been modeled in each of the 4 AFE components as flicker
and white noise. The results have been plotted in Fig. 15, which shows the impact
on the LNA, VOC, MUX, and ADC. The 2 components that are interacting with
the unamplified signal have the greatest impact on the signal fidelity. Since the
system is targeting a 1-µV resolution, the LNA and VOC components need to have
input/output noise that is less than that, as evidenced by Fig. 15b, where the signal
reconstruction error increases drastically above 1 µV. Unlike the LNA and VOC, the
MUX and ADC noise is less of an issue since the signal has already been amplified
only at the extreme end of the simulations; at 1 mV RMS, the noise does appear to
impact the performance, but it is still less than 1%.

(a) Power (b) RMS Error

Fig. 15 Performance impacts of VOC, LNA, MUX, and ADC noise
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4.4.5 Sampling Frequency
The final parameter in the system is the sampling frequency. For these simulations,
the lower bound was set at 64 Hz, which matches the adjustment frequency, and
the upper bound is 1024 Hz. Figure 16 shows the system performance across these
sampling frequencies. As one would expect, the power increases with the sampling
frequency, but there is not much of an impact on the signal fidelity above 256 Hz.
So therefore, the sampling frequency will likely just depend on the application and
available power and not on a specific error target.

(a) Power (b) RMS Error

Fig. 16 Performance impacts of sampling frequency

5. Conclusions
In this work, a new architecture to perform EEG recording has been presented.
While this work focused on the EEG applications, this architecture can be used
for other sensing applications where self-powered sensors would be desirable, such
as for Internet of Things systems. The presented architecture is capable of low-
power operation while maintaining a similar signal fidelity, within 1%, as regular
full-power system, while consuming less than 1% the power of the baseline system.

This architecture accomplishes this by using an adaptive feedback to control the
gain and offset of the AFE, which ensures the amplifiers are not saturated and clip-
ping the signal. Without this adaptive feedback, extremely low-voltage operation
would not be possible due to the amplifiers.

Additionally, this work presented an evaluation of the major parameters of each
component in the system. This shows that the bandwidth and noise of the AFE
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will need to be designed carefully to ensure proper operation, while the adjustment
frequency, sampling frequency, and ADC bitdepth, as long as they were sufficiently
high to meet the requirements of the application, do not have a large impact on
the performance of the system for the algorithms and application presented in this
work.

This architecture will enable real-world EEG recording, which will help enable
neuroscientists to study brain activity outside of the laboratory setting.
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List of Symbols, Abbreviations, and Acronyms
ADA adaptive data acquisition
ADC analog-to-digital converter
AFE analog frontend
DAC digital-to-analog converter
DC direct current
DSP digital signal processor
ECoG electrocorticography
EEG electroencephalogram
LNA low-noise amplifier
MUX multiplexer
RF radio frequency
RMS root mean square
SubVt subthreshold
TEG thermoelectric generator
VGA variable gain amplifier
VOC voltage offset controller
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